Retrofit Solutions and Next Generation Propulsion for Waterborne Transport

Array ( [0] => Array ( [value] => Recherche [safe] => Recherche [view] => Recherche ) )
Domaine de recherche :
Type de financement :
Type d'instrument :
Recherche & Innovation Action
Deadline :
Jeudi 12 Septembre 2019
1ère Partie : 16 Janvier 2019
Budget indicatif :
3 à 5 millions d'euros max. par projet
Budget total :
15 millions d'euros
Code de l'appel : LC-MG-1-8-2019
En savoir plus
À noter :

Specific Challenge:

Emissions from waterborne transport remain a challenge particularly concerning the water and air quality around coasts, ports and urban areas. For shipping and inland waterway transport retrofit technology including for example engine modifications, engine replacement, exhaust gas cleaning systems, PM filters, hybrid batteries, fuel changes, efficient emissions capture and storage system can potentially improve the environmental performance (CO2, NOx, SOx, PM) of existing fleets within the next five to ten years. However, new next generation vessels are expected to be both cleaner and more CO2 efficient. Vessels will be increasingly electrified and hybridised use clean fuels, on board energy storage and employ new technologies such as optimised design, batteries and high power fuels cells integrated within dual cycles and with combined heat and power. Novel large area propulsion systems also offer the possibility of large efficiency gains. To maximise efficiency gains from these technologies a radical rethink of ship design is needed.


Subtopic A) To be implemented through Research and Innovation Action.

  • Develop and validate a concept for a passenger ship powered primarily by high power fuel cells and if more efficient, in combination with a combustion engine or turbine as a combined cycle. On board power should exceed 5 MW and the concept should address issues concerning; combined heat and power, battery hybridisation, reliability, environmental performance on the whole life cycle, safety, regulatory, cost, ship design and layout, power system weight, volume and service requirements. The concept should be founded using LNG or LBG or CBG or synthetic fuels with the additional consideration of the consequences of 100% hydrogen operation. In addition, the critical barriers to development and deployment should be identified together with a road map for their solution. Work is expected to focus on the integration of fuel cell technology within the ship and not the detailed internal design of the fuel cell. Work should build upon other relevant activities such as the development of the IGF code within IMO.


Expected Impact:

Next generation propulsion solutions will enable a large (>10%) increase in energy efficiency and CO2 reduction. Enable integration of large high power marine fuel cells into ship design and demonstrate their feasibility, cost effectiveness and identify technical barriers to adoption. Enable innovative high efficiency low emission ship propulsion system that may integrate several power sources. Demonstrate the feasibility, efficiency gains, reliability and cost effectiveness of large area propulsers. Retrofit solutions will reduce SOx, NOx and PM pollution from waterborne transport, particularly around ports, terminals, urban and coastal regions and in compliance with urban air quality standards but also at open sea since air pollution can travel large distances. Significantly, increase the take up of retrofit emission reduction solutions in existing vessels. Enhance European competitiveness and support European jobs and growth. Facilitate deployment of innovative green waterborne transport technology.